|
A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. Advantages of this class of fuel cells include high efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost. The largest disadvantage is the high operating temperature which results in longer start-up times and mechanical and chemical compatibility issues. ==Introduction== Solid oxide fuel cells are a class of fuel cells characterized by the use of a solid oxide material as the electrolyte. SOFCs use a solid oxide electrolyte to conduct negative oxygen ions from the cathode to the anode. The electrochemical oxidation of the oxygen ions with hydrogen or carbon monoxide thus occurs on the anode side. More recently, proton-conducting SOFCs (PC-SOFC) are being developed which transport protons instead of oxygen ions through the electrolyte with the advantage of being able to be run at lower temperatures than traditional SOFCs. They operate at very high temperatures, typically between 500 and 1,000 °C. At these temperatures, SOFCs do not require expensive platinum catalyst material, as is currently necessary for lower-temperature fuel cells such as PEMFCs, and are not vulnerable to carbon monoxide catalyst poisoning. However, vulnerability to sulfur poisoning has been widely observed and the sulfur must be removed before entering the cell through the use of adsorbent beds or other means. Solid oxide fuel cells have a wide variety of applications from use as auxiliary power units in vehicles to stationary power generation with outputs from 100 W to 2 MW. In 2009, Australian company, Ceramic Fuel Cells successfully achieved an efficiency of a SOFC device up to the previously theoretical mark of 60%.〔(Ceramic fuel cells achieves world-best 60% efficiency for its electricity generator units ). Ceramic Fuel Cells Limited. 19 February 2009〕〔(Electricity from wood through the combination of gasification and solid oxide fuel cells ), Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008〕 The higher operating temperature make SOFCs suitable candidates for application with heat engine energy recovery devices or combined heat and power, which further increases overall fuel efficiency. Because of these high temperatures, light hydrocarbon fuels, such as methane, propane and butane can be internally reformed within the anode. SOFCs can also be fueled by externally reforming heavier hydrocarbons, such as gasoline, diesel, jet fuel (JP-8) or biofuels. Such reformates are mixtures of hydrogen, carbon monoxide, carbon dioxide, steam and methane, formed by reacting the hydrocarbon fuels with air or steam in a device upstream of the SOFC anode. SOFC power systems can increase efficiency by using the heat given off by the exothermic electrochemical oxidation within the fuel cell for endothermic steam reforming process. Additionally, solid fuels such as coal and biomass may be gasified to form syngas which is suitable for fueling SOFCs in integrated gasification fuel cell power cycles. Thermal expansion demands a uniform and well-regulated heating process at startup. SOFC stacks with planar geometry require in the order of an hour to be heated to light-off temperature. Micro-tubular fuel cell design geometries promise much faster start up times, typically in the order of minutes. Unlike most other types of fuel cells, SOFCs can have multiple geometries. The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube. The tubular design is advantageous because it is much easier to seal air from the fuel. The performance of the planar design is currently better than the performance of the tubular design however, because the planar design has a lower resistance comparatively. Other geometries of SOFCs include modified planar fuel cell designs (MPC or MPSOFC), where a wave-like structure replaces the traditional flat configuration of the planar cell. Such designs are highly promising, because they share the advantages of both planar cells (low resistance) and tubular cells. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Solid oxide fuel cell」の詳細全文を読む スポンサード リンク
|